MIL-PRF-19500/654 27 March 2000 FSC 5961 #### PERFORMANCE SPECIFICATION # SEMICONDUCTOR DEVICE, FIELD EFFECT RADIATION HARDENED (TOTAL DOSE AND SINGLE EVENT EFFECTS) TRANSISTOR, N-CHANNEL SILICON TYPE 2N7430T1 JANTXVD, JANTXVR, JANSD, AND JANSR This specification is approved for use by all Departments and Agencies of the Department of Defense. # 1. SCOPE - 1.1 Scope. This specification covers the performance requirements for a N-Channel, enhancement-mode, MOSFET, radiation hardened (total dose and single event characterization - see figure 4), power transistor intended for use in high density power switching applications. Two levels of product assurance are provided for each device type as specified in MIL-PRF-19500. - 1.2 Physical dimensions. See figure 1, (similar to TO-254AA). - 1.3 Maximum ratings. T_A = +25°C, unless otherwise specified. | Туре | P _T (1)
T _C =
+25°C | V_{DS} | V_{DG} | V_{GS} | I _{D1} (2)
T _C
=+25° | I _{D2} (2)
T _C =
+100°C | Is | I _{DM} | T_J and T_{STG} | V _{ISO}
70,000 ft.
altitude | |----------|---|-------------------|-------------------|--------------------|--|---|-------------------|-----------------|------------------------|--| | 2N7430T1 | <u>W</u>
125 | <u>V dc</u>
60 | <u>V dc</u>
60 | <u>V dc</u>
±20 | <u>A dc</u>
70 | <u>A dc</u>
54 | <u>A dc</u>
70 | A (pk)
200 | <u>°C</u>
-55
to | V dc
N/A | - (1) Derate linearly 1.2 W/°C for $T_C > +25$ °C; $P_T = (T_{jmax} T_C)/R_{\theta JC}$. (2) $I_D = ((T_{jmax} T_C)/((R_{\theta JC})X (r_{DS(on)} \text{ at } T_{jmax})))^{1/2}$. - - 1.4 Primary electrical characteristics at T_C = +25°C. | Туре | $\begin{array}{c} \text{Min} \\ \text{V}_{\text{(BR)DSS}} \\ \text{V}_{\text{GS}} = \text{0V} \\ \text{I}_{\text{D}} = \text{1.0 mA} \\ \text{dc} \end{array}$ | $V_{GS(TH)1}$ $V_{DS} = V_{GS}$ $I_{D} = 1.0 \text{ mA}$ dc | $\begin{aligned} &\text{Max I}_{DSS1} \\ &\text{V}_{GS} = 0 \\ &\text{V}_{DS} = 80\% \text{ of } \\ &\text{rated V}_{DS} \end{aligned}$ | $Max r_{DS(on)} (1)$ $V_{GS} = 12V$ | | R _{eJC} Max | I _{AS} = I _{DM} | |----------|--|---|---|-------------------------------------|-----------------------------------|----------------------|-----------------------------------| | | | | | $T_J = +25^{\circ}C$
at I_{D2} | $T_J = +125^{\circ}C$ at I_{D2} | | | | | <u>V dc</u> | <u>V dc</u>
Min Max | μA dc | Ω | Ω | <u>°C/W</u> | <u>A (pk)</u> | | 2N7430T1 | 60 | 1.5 4.0 | 25 | 0.012 | 0.022 | 0.83 | 200 | (1) Pulsed (see 4.5.1). Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Defense Supply Center, Columbus, ATTN: DSCC-VAC, P.O. Box 3990, Columbus, OH 43216-5000, by using the addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter. AMSC N/A | | Dimensions (all notes apply) | | | | | | |--------|------------------------------|------|----------|-------------|--|--| | Ltr | Inc | hes | Millim | Millimeters | | | | | Min | Max | Min | Max | | | | BL | .530 | .550 | 13.46 | 13.97 | | | | CH | .249 | .260 | 6.32 | 6.60 | | | | LD | .035 | .045 | 0.89 | 1.14 | | | | LL | .520 | .560 | 13.21 | 14.22 | | | | LO | .150 | BSC | | | | | | LS | .150 | TYP | 3.81 TYP | | | | | MHD | .139 | .149 | 3.53 | 3.78 | | | | MHO | .665 | .685 | 16.89 | 17.40 | | | | TL | .790 | .800 | 20.07 | 20.32 | | | | TT | .040 | .050 | 1.02 | 1.27 | | | | TW | .535 | .545 | 13.59 | 13.84 | | | | Term 1 | Drain | | | | | | | Term 2 | Source | | | | | | | Term 3 | Gate | | | | | | # NOTES: - 1. Dimensions are in inches. - 2. Metric equivalents are given for general information only. - 3. All terminals are isolated from case. - 4. Die to base is BeO isolated, terminals to case ceramic (AL_2O_3) isolated. - 5. In accordance with ANSI Y14.5M, diameters are equivalent to φx symbology. FIGURE 1. Physical dimensions (similar to TO-254). ### 2. APPLICABLE DOCUMENTS 2.1 <u>General</u>. The documents listed in this section are specified in sections 3 and 4 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements documents cited in sections 3 and 4 of this specification, whether or not they are listed. ### 2.2 Government documents. 2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation (see 6.2). ### **SPECIFICATION** #### DEPARTMENT OF DEFENSE MIL-PRF-19500 - Semiconductor Devices, General Specification for. # **STANDARD** ### DEPARTMENT OF DEFENSE MIL-STD-750 - Test Methods for Semiconductor Devices. (Unless otherwise indicated, copies of the above specifications, standards, and handbooks are available from the Defense Automated Printing Service, Building 4D (DPM-DODSSP), 700 Robbins Avenue, Philadelphia, PA 19111-5094.) 2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this document and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. # 3. REQUIREMENTS - 3.1 <u>General</u>. The requirements for acquiring the product described herein shall consist of this document and MIL-PRF-19500. - 3.2 <u>Qualification</u>. Devices furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable Qualified Manufacturer's List (QML) before contract award (see 4.2 and 6.3). - 3.3 <u>Abbreviations, symbols, and definitions</u>. Abbreviations, symbols, and definitions used herein shall be as specified in MIL-PRF-19500. - 3.4 Interface and physical dimensions. The interface and physical dimensions shall be as specified in MIL-PRF-19500, and herein. Nominal weight percent of lead material shall be 99.8% copper (Cu) and 0.20% zirconium (Z_r) - 3.4.1 <u>Lead finish</u>. Unless otherwise specified, lead finish shall be solderable in accordance with MIL-PRF-19500, MIL-STD-750, and herein. Where a choice of lead finish is desired, it shall be specified in the acquisition document (see 6.2). - 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-19500. At the option of the manufacturer, marking may be omitted from the body, but shall be retained on the initial container. - 3.6 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in paragraph 1.3, 1.4, and table I herein. - 3.7 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table I herein. - 3.8 <u>Electrostatic discharge protection</u>. The devices covered by this specification require electrostatic discharge protection. - 3.8.1 <u>Handling</u>. MOS devices must be handled with certain precautions to avoid damage due to the accumulation of static charge. However, the following handling practices are recommended: - a. Devices should be handled on benches with conductive handling devices. - b. Ground test equipment, tools, and personnel handling devices. - c. Do not handle devices by the leads. - Store devices in conductive foam or carriers. - e. Avoid use of plastic, rubber, or silk in MOS areas. - Maintain relative humidity above 50 percent if practical. - g. Care should be exercised during test and troubleshooting to apply not more than maximum rated voltage to any lead. - h. Gate must be terminated to source, R \leq or 100 k Ω , whenever bias voltage is applied drain to source. - 3.9 <u>Workmanship</u>. Semiconductor devices shall be processed in such a manner as to be uniform in quality and shall be free from other defects that will affect life, serviceability, or appearance. # 4. VERIFICATION - 4.1 Classification of Inspections. The inspection requirements specified herein are classified as follows: - a. Qualification inspection (see 4.2). - b. Screening (see 4.3). - c. Conformance inspection (see 4.4). - 4.2 <u>Qualification inspection</u>. Qualification inspection shall be in accordance with MIL-PRF-19500. Alternate flow is allowed for qualification inspection in accordance with figure 4 of MIL-PRF-19500. - 4.2.1 <u>Group E inspection</u>. Group E inspection shall be conducted in accordance with the conditions specified for subgroup testing in table IX of MIL-PRF-19500, and table III herein. End point electrical measurements shall be as specified in table III herein. 4.3 <u>Screening</u>. Screening shall be in accordance with table IV of MIL-PRF-19500, and as specified herein. The following measurements shall be made in accordance with table I herein. Devices that exceed the limits of table I herein shall not be acceptable. | | Measurement | | | | | | |--|--|--|--|--|--|--| | Screen (see table IV of MIL-PRF-19500) | JANS | JANTXV | | | | | | (1) | Method 3470 E _{AS} test (see 4.5.4) | Method 3470 E _{AS} test (see 4.5.4) | | | | | | (1) | Method 3161 (see 4.5.3) | Method 3161 (see 4.5.3) | | | | | | (1) | Gate stress test (see 4.5.5) | Gate stress test (see 4.5.5) | | | | | | (2) | Subgroup 2 of table I herein | Subgroup 2 of table I herein | | | | | | 9 | I _{DSS1} , I _{GSS} as a minimum | Not applicable | | | | | | 10 | MIL-STD-750, method 1042 test condition B | MIL-STD-750, method 1042 test condition B | | | | | | 11 | I _{GSSF1} , I _{GSSR1} , I _{DSS1} , r _{DS(ON)} , V _{GS(TH)}
Subgroup 2 of table I herein. | I _{GSSF1} , I _{GSSR1} , I _{DSS1} , r _{DS(ON)} , V _{GS(TH)}
Subgroup 2 of table I herein. | | | | | | | $\Delta I_{GSSF1} = \pm 20$ nA dc or $\pm 100\%$ of initial value, whichever is greater. | | | | | | | | ΔI_{GSSR1} = ±20 nA dc or ±100% of initial value, whichever is greater. | | | | | | | | ΔI_{DSS1} = ±25 μA dc or ±100% of initial value, whichever is greater. | | | | | | | 12 | MIL-STD-750, method 1042 test condition A, 240 hours minimum. | MIL-STD-750, method 1042 test condition A, 160 hours minimum. | | | | | | 13 | Subgroups 2 and 3 of table I herein. $\Delta I_{GSSF1} = \pm 20$ nA dc or $\pm 100\%$ of initial value, whichever is greater. | Subgroup 2 of table I herein. $\Delta I_{GSSF1} = \pm 20$ nA dc or $\pm 100\%$ of initial value, whichever is greater. | | | | | | | ΔI_{GSSR1} = ±20 nA dc or ±100% of initial value, whichever is greater. | ΔI_{GSSR1} = ±20 nA dc or ±100% of initial value, whichever is greater. | | | | | | | ΔI_{DSS1} = ±25 μA dc or ±100% of initial value, whichever is greater. | ΔI_{DSS1} = ±25 μA dc or ±100% of initial value, whichever is greater. | | | | | | | $\Delta r_{DS(ON)1} = \pm 20\%$ of initial value. | $\Delta r_{DS(ON)1} = \pm 20\%$ of initial value. | | | | | | | $\Delta V_{GS(TH)1} = \pm 20\%$ of initial value. | $\Delta V_{GS(TH)1}$ = ±20% of initial value. | | | | | - (1) Shall be performed anytime before screen 10. - (2) Shall be performed after E_{AS} test, method 3161, and gate stress test. - 4.4 <u>Conformance inspection</u>. Conformance inspection shall be in accordance with MIL-PRF-19500. - 4.4.1 <u>Group A inspection</u>. Group A inspection shall be conducted in accordance with table V of MIL-PRF-19500 and table I herein. 4.4.2 <u>Group B inspection</u>. Group B inspection shall be conducted in accordance with the conditions specified for subgroup testing in tables VIa (JANS) and VIb (JANTXV) of MIL-PRF-19500 and paragraphs 4.4.2.1 and 4.4.2.2 herein. Electrical measurements (end-points) shall be in accordance with table I, group A, subgroup 2 herein. Delta V_{SD} measurements shall be in accordance with table IV herein. # 4.4.2.1 Group B inspection, table VIa (JANS) of MIL-PRF-19500. | Subgroup | Method | <u>Condition</u> | |----------|--------|--| | В3 | 1051 | Test condition G, 100 cycles | | В3 | 2077 | SEM | | B4 | 1042 | Intermittent operation life, condition D, 2,000 cycles. No heat sink or forced-air cooling on the device shall be permitted during the on cycle. $T_{\text{on}} = 30$ seconds minimum. | | B5 | 1042 | Accelerated steady-state reverse bias, condition A, V_{DS} = rated; T_A = +175°C; t = 120 hours, min. | | B5 | 1042 | Accelerated steady-state gate bias, condition B, V_{GS} = rated; T_A = +175°C; t = 24 hours. | | B6 | 3161 | Thermal resistance, see 4.5.2. | # 4.4.2.2 Group B inspection, table VIb (JANTXV of MIL-PRF-19500). | Subgroup | Method | Condition | |----------|--------|---| | В3 | 1042 | Intermittent operation life, condition D, 2,000 cycles. No heat sink or forced-air cooling on the device shall be permitted during the on cycle. $T_{\rm on}$ = 30 seconds minimum. | | B5 | 3161 | Thermal resistance, see 4.5.2. | 4.4.3~ Group C inspection. Group C inspection shall be conducted in accordance with the conditions specified for subgroup testing in table VII of MIL-PRF-19500 and as follows. Electrical measurements (end-points) shall be in accordance with table I, group A, subgroup 2 herein. Delta V_{SD} measurements shall be in accordance with table IV herein. | Subgroup | Method | Condition | |----------|--------|---| | C2 | 2036 | Terminal strength, test condition A, weight = 10 lbs., 15 sec. | | C6 | 1042 | Intermittent operation life, condition D, 6,000 cycles. No heat sink or forced-air cooling on the device shall be permitted during the on cycle. T_{on} = 30 seconds minimum. | - 4.4.4 <u>Group D inspection</u>. Group D inspection shall be conducted in accordance with table VIII of MIL-PRF-19500 and table II herein. - 4.4.4.1 <u>Design parameters</u>. Not tested on a per lot basis. Design shall be such that the devices shall be capable of meeting the requirements in figure 4. - 4.5 Methods of inspection. Methods of inspection shall be as specified in the appropriate tables and as follows. - 4.5.1 <u>Pulse measurements</u>. Conditions for pulse measurement shall be as specified in section 4 of MIL-STD-750. - 4.5.2 <u>Thermal resistance</u>. Thermal resistance measurements shall be performed in accordance with method 3161 of MIL-STD-750. The maximum limit of R $_{\theta JC}$ = 0.83°C/W. The following parameters shall apply: | а | Measuring current(I _M) | 10 mA | |---|--|---| | b | . Drain heating current (I _H) | 4 A | | С | . Heating time (t _H) | Steady-state (see MIL-STD-750, method 3161) | | d | . Drain-source heating voltage (V _H) | 25 V | | е | . Measurement time delay (t _{MD}) | 30 to 60 μs | TABLE I. Group A inspection | Inspection 1/ | | MIL-STD-750 | Symbol | Lin | nits | Units | |--|--------|---|----------------------|-----|-------|-------| | | Method | Conditions | | Min | Max | | | Subgroup 1 | | | | | | | | Visual and mechanical inspection | 2071 | | | | | | | Subgroup 2 | | | | | | | | Breakdown voltage drain to source | 3407 | $V_{GS} = 0V$, $I_D = 1$ mA dc, bias condition C | V _{(BR)DSS} | 60 | | V dc | | Gate to source voltage (threshold) | 3403 | $V_{DS} = V_{GS}$, $I_D = 1$ mA dc | V _{GS(TH)1} | 1.5 | 4.0 | V dc | | Gate reverse current | 3411 | $V_{GS} = \pm 20V$ dc, bias condition C, $V_{DS} = 0V$ | I _{GSS1} | | ±100 | nA dc | | Drain current | 3413 | V_{GS} = 0V dc, bias condition C, V_{DS} = 80 % of rated V_{DS} , | I _{DSS1} | | 25 | μA dc | | Static drain to source on-state resistance | 3421 | V_{GS} = 12V dc, condition A, pulsed (see 4.5.1), $I_D = I_{D2}$ | r _{DS(ON)1} | | 0.012 | Ω | | Drain to source on-state voltage | 3405 | $V_{GS} = 12V$ dc, condition A, pulsed (see 4.5.1), $I_D = I_{D1}$ | V _{DS(ON)} | | 0.88 | V dc | | Forward voltage | 4011 | $V_{GS} = 0V$ dc, condition A, pulsed (see 4.5.1), $I_D = I_{D1}$ | V _{SD} | | 1.8 | V dc | | Subgroup 3 | | | | | | | | High temperature operation | | $T_{C} = T_{J} = +125^{\circ}C$ | | | | | | Gate reverse current | 3411 | $V_{GS} = \pm 20V$ dc, bias condition C, $V_{DS} = 0V$ | I _{GSS2} | | ±200 | nA dc | | Drain current | 3413 | V_{GS} = 0V dc, bias condition C,
V_{DS} = 80% of rated V_{DS} | I _{DSS2} | | 0.25 | mA dc | | Static drain to source on-state resistance | 3421 | V_{GS} = 12V dc, condition A, pulsed (see 4.5.1), I_D = I_{D2} | r _{DS(ON)2} | | 0.022 | Ω | | Gate to source voltage (threshold) | 3403 | $V_{DS} = V_{GS}$, $I_D = 1$ mA dc | V _{GS(TH)2} | 0.5 | | V dc | See footnote at end of table. TABLE I. Group A inspection - Continued | Inspection 1/ | | MIL-STD-750 | Symbol | Lin | nits | Units | |---|--------|--|----------------------|-----|------|-------| | | Method | Conditions | | Min | Max | | | Subgroup 3 - continued | | | | | | | | Low temperature operation | | $T_C = T_J = -55^{\circ}C$ | | | | | | Gate to source voltage (threshold) | 3403 | $V_{DS} = V_{GS}$, $I_D = 1$ mA dc | V _{GS(TH)3} | | 5.0 | V dc | | Subgroup 4 | | | | | | | | Switching time test | 3472 | $I_D = I_{D1}, V_{GS} = 12 \text{ V dc}$ $R_G = 2.35 \Omega,$ $V_{DD} = 50\% \text{ of rated } V_{DS}$ | | | | ns | | Turn-on delay time | | | t _{D(on)} | | 40 | ns | | Rise time | | | t _r | | 200 | ns | | Turn-off delay time | | | t _{D(off)} | | 70 | ns | | Fall time | | | t _f | | 40 | ns | | Subgroup 5 | | | | | | | | Safe operating area test (high voltage) | 3474 | See figure 3, t_p = 10 ms min. V_{DS} = 80% of max. rated V_{DS} ($V_{DS} \le 200 \text{ V}$) | | | | | | Electrical measurements | | See table I, group A, subgroup 2 | | | | | | Subgroup 6 | | herein | | | | | | Not applicable | | | | | | | | Subgroup 7 | | | | | | | | Gate charge | 3471 | Condition A or B | | | | | | On-state gate charge | | | Q _{G(ON)} | | 170 | nC | | Gate to source charge | | | Q_{GS} | | 43 | nC | | Gate to drain charge | | | Q_{GD} | | 81 | nC | | Reverse recovery time | 3473 | di/dt = 100 A/ μ s, V _{DD} \leq 50 V, I _D = I _{D1} | t _{rr} | | 250 | ns | ^{1/} For sampling plan, see MIL-PRF-19500. TABLE II. Group D Inspection. | Inspection <u>1</u> / <u>2</u> / <u>3</u> / <u>4</u> / | MIL-STD-750 | | Symbol | | adiation
nits | Post irr | Units | | |---|-------------|--|----------------------|-----|------------------|----------|-------|-------| | | Method | Conditions | | Min | Max | Min | Max | | | Subgroup 1 | | | | | | | | | | Not applicable | | | | | | | | | | Subgroup 2 | | T _C = +25°C | | | | | | | | Steady-state
total dose
irradiation
(V _{GS} bias) | 1019 | $V_{GS} = 12V,$ $V_{DS} = 0V$ | | | | | | | | Steady-state total dose irradiation (V _{DS} bias) | 1019 | $V_{GS} = 0V$, $V_{DS} = 80\%$ of rated V_{DS} | | | | | | | | Breakdown voltage drain to source | 3407 | $V_{GS} = 0V$, $I_D = 1$ mA dc, bias condition C | V _{(BR)DSS} | 60 | | 60 | | V dc | | Gate to source
voltage
(threshold) | 3403 | $V_{DS} = V_{GS}$, $I_D = 1$ mA dc | V _{GS(TH)1} | 1.5 | 4.0 | 1.5 | 4.0 | V dc | | Gate reverse current | 3411 | $V_{GS} = \pm 20V \text{ dc}, V_{DS}$
= 0V, bias condition
C | I _{GSS1} | | ±100 | | ±100 | nA dc | | Drain current | 3413 | $V_{GS} = 0V$, $V_{DS} =$ 80% of rated V_{DS} , bias condition C | I _{DSS1} | | 25 | | 25 | μA dc | | Static drain to source on-state resistance | 3421 | $V_{GS} = 12V dc$, condition A, pulsed (see4.5.1), $I_D = I_{D2}$ | r _{DS(ON)3} | | 0.013 | | 0.013 | Ω | | Drain to source on-state voltage | 3405 | V_{GS} = 12V dc,
condition A, pulsed
(see 4.5.1), $I_D = I_{D1}$ | V _{DS(ON)2} | | .96 | | .96 | V dc | ^{1/} For sampling plan see MIL-PRF-19500. Electrical specifications are for 'D' and 'R' rad levels. Group D qualification may be performed prior to lot f Group D qualification may be performed prior to lot formation. Wafers qualified to these group D QCI requirements may be used for any other detail specification utilizing the same die design. ^{4/} At the manufacturer's option, group D samples need not be subjected to all the screening tests, but shall be assembled in its qualified package or in any qualified package that the manufacturer has data to correlate the performance to the designated package. TABLE III. Group E inspection (all quality levels) - for qualification only. | Inspection <u>1</u> / <u>2</u> / <u>3</u> / <u>4</u> / <u>5</u> / | MIL-STD-750 | | Qualification and large lot quality conformance inspection. | |---|-------------|--|---| | | Method | Conditions | | | Subgroup 1 | | | 12 devices | | Temperature cycling (air to air) | 1051 | Test condition G, 500 cycles | c = 0 | | Hermetic seal | 1071 | | | | Fine leak
Gross leak | | | | | Electrical measurements | | See table I, group A, subgroup 2 herein. | | | Subgroup 2 1/ | | | 12 devices
c = 0 | | Steady-state gate bias | 1042 | Test condition B; 1,000 hours | C = 0 | | Electrical measurements | | See table I, group A, subgroup 2 herein. | | | Steady state reverse bias | 1042 | Test condition A; 1,000 hours | | | Electrical measurements | | See table I, group A, subgroup 2 herein. | | | Subgroup 3 | | | | | Not applicable | | | 22 devices | | Subgroup 4 | | | c = 0 | | Thermal resistance | 3161 | R _{0JC} = 0.83°C/W maximum. See 4.5.2 | | | Subgroup 5 | | | | | Barometric pressure test
(not required for V _{BR(DSS)}
≤ 200V) | 1001 | Test condition C | 15 devices
c = 0 | | Subgroup 6 Electrostatic discharge sensitivity (ESDS) | 1020 | | 3 devices
c = 0 | See footnotes at end of table. TABLE III. Group E inspection (all quality levels) - for qualification only - Continued. | Inspection <u>1</u> / <u>2</u> / <u>3</u> / <u>4</u> / <u>5</u> / | MIL-STD-750 | | Qualification and large lot conformance inspection. | |---|-------------|--|---| | | Method | Conditions | | | Subgroup 7 | | | | | Not applicable | | | | | Subgroup 8 | | | 3 devices <u>5</u> / | | Electrical measurements 3/ | | I _{GSS1} and I _{DSS1} tests from table I, group A, subgroup 2, herein. | c = 0 | | SEE Effect Testing 4/ | 1080 | Fluence = $3e5 \pm 20\%$ ions/cm ²
Flux = $5e3$ to $2e4$ ions/cm ² sec
Beam energy = 260 to 330 MeV
Temperature = $+25$ °C \pm 5 °C | | | 2N7430T1 | | LET = 26 to 30 MeV-cm ² /mg
lon range = 40 to 45 microns
Insitu bias conditions: $V_{DS} = 60V$ and $V_{GS} = -20V$
LET = 36 to 40 MeV-cm ² /mg | | | | | Ion range = 35 to 40 microns | | | | | Insitu bias conditions: $V_{DS} = 60V$ and $V_{GS} = -10V$ $V_{DS} = 48V$ and $V_{GS} = -15V$ $V_{DS} = 36V$ and $V_{GS} = -20V$ | | | | | LET = 56 to 60 MeV-cm²/mg Ion range = 30 to 35 microns Insitu bias conditions: $V_{DS} = 60V$ and $V_{GS} = 0V$ $V_{DS} = 48V$ and $V_{GS} = -5V$ $V_{DS} = 36V$ and $V_{GS} = -10V$ $V_{DS} = 24V$ and $V_{GS} = -15V$ $V_{DS} = 12V$ and $V_{GS} = -20V$ | | | Electrical measurements 3/ | | I _{GSS1} and I _{DSS1} tests from table I, group A, subgroup 2, herein. | | - 1/ A separate sample for each test may be pulled. - 2/ Group E qualification of single event effect testing may be performed prior to lot formation. Wafers qualified to these group E QCI requirements may be used for any other performance specification utilizing the same die design. - 3/ As a minimum, gate to source leakages and drain to source leakage are to be examined to verify the electrical performance of the DUT prior to and after test. At the manufacturer's option, the remaining static tests in table I, group A, subgroup 2 may be performed. - <u>4</u>/ Devices passing a given combination of drain and gate voltage for an LET of 56 to 60 MeV-cm²/mg qualify the same conditions for an LET of 36 to 40 MeV-cm²/mg or an LET of 26 to 30 MeV-cm²/mg. - 5/ This sampling plan applies to each bias condition defined. TABLE IV. Group B and C delta V_{SD} measurements | Ste | p Inspection <u>1</u> / <u>2</u> / <u>3</u> / | MIL-STD-750 | | Symbol | Limits | | Units | |-----|---|-------------|-------------------|-----------------|--------|-----|-------| | | | Method | Conditions | | Min | Max | | | 1 | Thermal response | 3161 | See 4.5.3 herein. | ΔV_{SD} | | 110 | mV | ^{1/2} The delta V_{SD} measurements for table VIa (JANS) of MIL-PRF-19500 are as follows: Subgroup 4, see table IV herein, step 1. ^{2/} The delta V_{SD} measurements for table VIb (JANTXV) of MIL-PRF-19500 are as follows: Subgroup 3, see table IV herein, step 1. $[\]underline{3}$ / The delta V_{SD} measurements for table VII of MIL-PRF-19500 are as follows: Subgroup 6, see table IV herein, step 1. FIGURE 2. Thermal response curves. FIGURE 3. Safe operating area graphs. FIGURE 4. Single event effects safe operating area graphs. 4.5.3 Thermal response ΔV_{SD} measurement). The delta V_{SD} measurement shall be performed in accordance with method 3161 of MIL-STD-750. The delta V_{SD} conditions (I_H and V_H) and maximum limit shall be derived by each vendor from the thermal response curves (see figure 2). The chosen delta V_{SD} measurement and conditions for each device in the qualification lot shall be submitted in the qualification report. The chosen delta V_{SD} shall be considered final after the manufacturer has had the oportunity to test five consecutive lots. - 4.5.4 Single pulse avalanche energy (EAS). - a. $I_{AS} = I_{DM}$ - b. L = 0.1 mH - c. Gate to source resistor ($25\Omega \le R_{GS} \le 200 \Omega$) - d. $E_{AS} = 1/2 LI_{AS}^2$ - e. $V_{DD} \le 60 \text{ V}$ - f. Initial junction temperature = +25°C, -5°C, +10°C - 4.5.5 Gate stress test. - a. $V_{GS} = -30 \text{ V}$ - b. $t = 250 \mu s$, minimum - 5. PACKAGING - 5.1 <u>Packaging</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Points' packaging activity within the Military Department or Defense Agency, or within the Military Departments' System Command. Packaging data retrieval is available from the managing Military Departments' or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity. # 6. NOTES (This section contains information of a general or explanatory nature that may be helpful, but is not mandatory.) - 6.1 Intended use. The notes specified in MIL-PRF-19500 are applicable to this specification. - 6.2 Acquisition requirements. Acquisition documents should specify the following: - a. Title, number, and date of this specification. - b. Issue of DoDISS to be cited in the solicitation and, if required, the specific issue of individual documents referenced (see 2.2.1). - c. Packaging requirements (see 5.1). - d. Lead finish (see 3.4.1). - e. Type designation and product assurance level. - 6.3 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-19500 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from Defense Supply Center, Columbus, ATTN: DSCC-VQE, P.O. Box 3990, Columbus, OH 43216-5000. - 6.4 <u>Cross-reference list</u>. The following table shows the generic P/N and its associated military P/N (without JAN and RHA prefix). | Generic P/N | Military P/N | |-------------|--------------| | SJ055 | 2N7430T1 | Custodians: Army - CR Navy - EC Air Force - 11 NASA - NA DLA - CC Preparing activity: DLA - CC (Project 5961-2213) # STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL # **INSTRUCTIONS** - 1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter should be given. - 2. The submitter of this form must complete blocks 4, 5, 6, and 7. - 3. The preparing activity must provide a reply within 30 days from receipt of the form. | 5. The preparing activity must provide a re | pry within 30 days from receipt of the form. | | | | | |--|---|--|--|--|--| | NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements. | | | | | | | I RECOMMEND A CHANGE: | 1. DOCUMENT NUMBER MIL-PRF-19500/654 | 2. DOCUMENT DATE (YYMMDD)
27 March 2000 | | | | | | EVICE, FIELD-EFFECT RADIATION HARDE
LICON TYPE 2N7430T1 JANTXVD, JANTXV | | | | | | 4. NATURE OF CHANGE (Identify paragraph number and include proposed rewrite, if possible. Attach extra sheets as needed.) | 5. REASON FOR RECOMMENDATION | 6. SUBMITTER | | | | | | | a. NAME (Last, First, Middle initial) | b. ORGANIZATION | | | | | | c. ADDRESS (Include Zip Code) | d. TELEPHONE (Include Area Code) Commercial DSN FAX EMAIL | 7. DATE SUBMITTED (YYMMDD) | | | | | 8. PREPARING ACTIVITY | | | | | | | a. Point of contact: Alan Barone | b. TELEPHONE
Commercial DSN FAX
614-692-0510 850-0510 614-692-69 | EMAIL
939 alan_barone@dscc.dla.mil | | | | | c. ADDRESS: Defense Supply Center
Columbus, ATTN: DSCC-VAC, 3990
East Broad Street, Columbus, OH
43216-5000 | IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTACT: Defense Quality and Standardization Office 5203 Leesburg Pike, Suite 1403, Falls Church, VA 22041-3466 Telephone (703) 756-2340 DSN 289-2340 | | | | |